The function sinx . cosx is the product of two trigonometric functions: sine (sinx) and cosine (cosx).
The function sinx is a periodic function oscillating between -1 and 1. It has a period of 2π, meaning that it repeats itself every 2π units. The function cosx is also a periodic function oscillating between -1 and 1, with a period of 2π.
When sinx and cosx are multiplied together, the resulting curve will also be periodic, with a period of 2π. The product sinx . cosx is an even function, meaning that it is symmetrical about the y-axis. It takes the value of 0 at the points where sinx and cosx are equal to 0 (i.e. x = 0, π, 2π, ...).
The graph of sinx . cosx has an amplitude of 1/2, which means it oscillates between -1/2 and 1/2. It reaches its maximum values at x = π/4, 5π/4, 9π/4, ... and its minimum values at x = 3π/4, 7π/4, 11π/4, ...
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page